这是什么错误 · Issue #46 · zhixuhao/unet · GitHub
@ajithvallabai Forgot to mention this, but I am already doing from keras.layers.merge import concatenate
.
If it helps, here is my model.py
right now:
import numpy as np
import os
import skimage.io as io
import skimage.transform as trans
import numpy as np
from keras.models import *
from keras.layers import MaxPooling2D, UpSampling2D, Dropout
from keras.layers.convolutional import Conv2D, Conv2DTranspose
from keras.layers.merge import concatenate
from keras.optimizers import *
from keras.callbacks import ModelCheckpoint, LearningRateScheduler
from keras import backend as keras
def unet(pretrained_weights = None,input_size = (256,256,1)):
inputs = Input(input_size)
conv1 = model.add(Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(inputs))
conv1 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv1)
pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)
conv2 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool1)
conv2 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv2)
pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)
conv3 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool2)
conv3 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv3)
pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)
conv4 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool3)
conv4 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv4)
drop4 = Dropout(0.5)(conv4)
pool4 = MaxPooling2D(pool_size=(2, 2))(drop4)
conv5 = Conv2D(1024, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool4)
conv5 = Conv2D(1024, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv5)
drop5 = Dropout(0.5)(conv5)
up6 = Conv2DTranspose(512, (2,2),strides=(2,2), activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(drop5)
merge6 = concatenate([drop4,up6],axis=3)
conv6 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge6)
conv6 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv6)
up7 = Conv2DTranspose(256,(2,2),strides=(2,2), activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv6)
merge7 =concatenate([conv3,up7],axis=3)
conv7 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge7)
conv7 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv7)
up8 = Conv2DTranspose(128,(2,2),strides=(2,2), activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv7)
merge8 =concatenate([conv2,up8],axis=3)
conv8 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge8)
conv8 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv8)
up9 = Conv2DTranspose(64,(2,2),strides=(2,2), activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv8)
merge9 =concatenate([conv1,up9],axis=3)
conv9 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge9)
conv9 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv9)
conv9 = Conv2D(2, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv9)
conv10 = Conv2D(1, 1, activation = 'sigmoid')(conv9)
model = Model(input = inputs, output = conv10)
model.compile(optimizer = Adam(lr = 1e-4), loss = 'binary_crossentropy', metrics = ['accuracy'])
#model.summary()
if(pretrained_weights):
model.load_weights(pretrained_weights)
return model
which unfortunately outputs the error message that I have posted above. Are you able to reproduce this problem?
为您推荐了相关的技术文章:
- How to troubleshoot the Key Management Service (KMS)
- Reversing and Patching .NET Binaries with Embedded References
- EternalPetya and the lost Salsa20 key - Malwarebytes Labs
- SecWiki/linux-kernel-exploits: linux-kernel-exploits Linux平台提权漏洞集合
- Exploring the crypt: Analysis of the WannaCrypt ransomware SMB exploit propagation
原文链接: github.com